血流量、血流阻力和血壓 

  血液在心血管系統中流動的一系列物理學問題屬於血流動力學的範疇。血流動力學和一般的流體力學一樣,其基本的研究物件是流量、阻力和壓力之間的關係。由於血管是有彈性和可擴張的而不是硬質的管道系統,血液是含有血細胞和膠體物質等多種成分的液體,而不是理想液體,因此血流動力學除與一般流體力學有共同點之外,又有它自身的特點。

 

(一)血流量和血流速度

  單位時間內流過血管某一截面的血量稱為血流量,也稱容積速度,其單位通常以ml/minL/min來表示。血液中的一個質點在血管內移動的線速度,稱為血流速度。血液在血管流動時,其血流速度與血流量成正比,與血管的截面成反比。

 

1、泊肅葉(Poiseuilli)定律:

泊肅葉研究了液體在管道系統內流動的規律,指出單位時間內液體的流量(Q)與管道兩端的壓力差P1-P2以及管道半徑r4次方成正比,與管道的長度L成反比。這些關係可用下式表示:

  Q=Kr4/L(P1-P2)

  這一等式中的K為常數。後來的研究證明它與液體的粘滯度η有關。因此泊肅葉定律又可寫為

  Q=π(P1-P2)r4/8ηL

 

2、層流和湍流:

血液在血管內流動的方式可分為層流和湍流兩類。在層流的情況下,液體每個質點的流動方向都一致,與血管的長軸平行;但各質點的流速不相同,在血管軸心處流速最快,越靠近管壁,流速越慢。因此可以設想血管內的血液由無數層同軸的圓柱面構成,在同一層的液體質點流速相同,由軸心向管壁,各層液體的流速依次遞減,如圖4-18所示。圖中的箭頭指示血流的方向,箭的長度表示流速,在血管的縱剖面上各箭頭的連線形成一抛物線。泊肅葉定律適用於層流的情況。當血液的流速加快到一定程度後,會發生湍流。此時血液中各個質點的流動方向不再一致,出現旋渦。在湍流的情況下,泊肅葉定律不再適用,血流量不是與血管兩端的壓力差成正比,而是與壓力差的平方根成正比。關於湍流的形成條件,Reynolds提出一個經驗公式:

  Re=VDσ/η

  式中的V為血液在血管內的平均流速(單位為cm/s,D為管腔直徑(單位為cm為血液密度(單位為g/cm3),η為血液沾滯度(單位為泊),ReReynolds數,沒有單位。一般當Re數超過2000時,就可發生湍流。由上式可知,在血流速度快,血管口徑大,血液粘滯度低的情況下,容易產生湍流。

 

4-18 層流情況下各層血液的流速

 


 

(二)血流阻力

  血液在血管內流動時所遇到的阻力,稱為血流阻力。血流阻力的產生,是由於血液流動時因磨擦而消耗能量,一般是表現為熱能。這部分熱能不可能再轉換成血液的勢能或動能,故血液在血管內流動時壓力逐漸降低。在湍流的情況下,血液中各個質點不斷變換流動的方向,故消耗的能量較層流時更多,血流阻力就較大。

 

  血流阻力一般不能直接測量,而需通過計算得出。血液在血管中的流動與電荷在導體中流動有相似之處。根據歐姆定律,電流強度與導體兩端的電位差成正比,與導體的電阻成反比。這一關係也適用於血流,即血流量與血管兩端的壓力差成正比,與血流阻力R成反比,可用下式表示:

  Q=P1-P2/R

 

  在一個血管系統中,若測得血管兩端的壓力差和血流量,就可根據上式計算出血流阻力。如果比較上式和泊肅葉定律的方程式,則可寫出計算血流阻力的方程式,即

  R=8ηL/πr4

 

  這一算式表示,血流阻力與血管的長度和血液的粘滯度成正比,與血管半徑的4次方成反比。由於血管的長度變化很小,因此血流阻力主要由血管口徑和血液粘滯度決定。對於一個器官來說,如果血液粘滯度不變,則器官的血流量主要取決於該器官的阻力血管的口徑。阻力血管口徑增大時,血流阻力降低,血流量就增多;反之,當阻力血管口徑縮小時,器官血流量就減少。機體對迴圈功能的調節中,就是通過控制各器官阻力血管和口徑來調節各器官之間的血流分配的。

 

  血液粘滯度是決定血流阻力的另一因素。全血的粘滯度為水的粘滯度的4-5倍。血液粘滯度的高低取決於以下幾個因素:

 

1、紅細胞比容一般說來,紅細胞比容是決定血液粘滯度的最重要的因素。紅細胞比容愈大,血液粘滯度就愈高。

 

2、血流的切率: 在層流的情況下,相鄰兩層血液流速的差和液層厚度的比值,稱為血流切率(shear rate)。從圖4-18可見,切率也就是圖中抛物線的斜率。勻質液體的粘滯度不隨切率的變化而改變,稱為牛頓液。血漿屬於牛頓液。非勻質液體的粘滯度隨著切率的減小而增大,稱為非牛頓液。全血屬非牛頓液。當血液在血管內以層流的方式流動時,紅細胞有向中軸部分移動的趨勢。這種現象稱為軸流(axial flow)。當切率較高時,軸流現象更為明顯,紅細胞集中在中軸,其長軸與血管縱軸平行,紅細胞移動時發生的旋轉以及紅細胞相互間的撞擊都很小,故血液的粘滯度較低。在切率低時,紅細胞可發生聚集,使血液粘滯度增高。

 

3、血管口徑:血液在較粗的血管內流動時,血管口徑對血液粘滯度不發生影響。但當血液在直徑小於0.2-0.3mm的微動脈內流動時,只要切率足夠高,則隨著血管口徑的進一步變小,血液粘滯度也變低。這一現象產生原因尚不完全清楚,但對機體有明顯的益處。如果沒有此種反應,血液在小血管中流動的阻力將會大大增高。

 

4、溫度:血液的粘滯度隨溫度的降低而升高。人體的體表溫度比深部溫度低,故血液流經體表部分時粘滯度會升高。如果將手指浸在冰水中,局部血液的沾滯度可增加2倍。

 

(三)血壓

  血壓是指血管內的血液對於單位面積血管壁的側壓力,也即壓強。按照國際標準計量單位規定,壓強的單位為帕(Pa),即牛頓/2N/m2)。帕的單位較小,血壓數值通常用千帕(kPa)來表示(1mmHg等於0.133kPa)。

 

  血壓的形成,首先是由於心血管系統內有血液充盈。循環系統中血液充盈的程度可用循環系統平均充盈壓來表示。在動物實驗中,用電刺激造成心室顫動使心臟暫時停止射血,血流也就暫停,因此循環系統中各處的壓力很快就取得平衡。此時在循環系統中各處所測得的壓力都是相同的,這一壓力數值即循環系統平均充盈壓。這一數值的高低取決於血量和循環系統容量之間的相對關係。如果血量增多,或血管容量縮小,則循環系統平均充盈壓就增高;反之,如果血量減少或血管容量增大,則循環系統平均充盈壓就降低。用巴比妥麻醉的狗,循環系統平均充盈壓約為0.93kPa(7mmHg)。人的循環系統平均充盈壓估計接近這一數值。

 

  形成血壓的另一個基本因素是心臟射血。心室肌收縮時所釋放的能量可分為兩部分,一部分用於推動血液流動,是血液的功能;另一部分形成對血管壁的側壓,並使血管壁擴張,這部分是勢能,即壓強能。在心舒期,大動脈發生彈性回縮,又將一部分勢能轉變為推動血液的動能,使血液在血管中繼續向前流動。由於心臟射血是間斷性的,因此在心動週期中動脈血壓發生週期性的變化。另外,由於血液從大動脈流向心房的過程中不斷消耗能量,故血壓逐漸降低。在機體處於安靜狀態時,體循環中毛細血管前阻力血管部分血壓降落的幅度最大。

 

  生物學實驗中測量血壓的經典方法,是將導管的一端插入動脈、靜脈或心腔,將導管的另一端連至一裝有水銀的U形管,從U形管兩邊水銀面高度的差即讀得測定部位的血壓值。水銀檢壓計測得的壓力讀數為平均壓。現在已有多種類型的壓力換能器,可將壓強能的變化轉變為電能的變化,並精確地測出心動週期中各瞬間的血壓數值。在臨床上,常用聽診器間接測定肱動脈的收縮壓和舒張壓。在有些情況下,也可用導管插入血管直接測量血壓。在用導管直接測量血壓時,如果導管的開口正對血流,則血流的動能也轉變成壓強能,因此測得的血壓值大於血液對血管壁的側壓。稱為端壓。當人體處於安靜狀態時,體循環中血流的動能部分在總的能量中只占很小比例,在心縮期主動脈壓達最大值時,血流的動能也僅占總能量的3%。在肌肉運動時,血流速度大大加快,動能部分所占的比例增高。在肺循環中,由於肺動脈壓較低,而血流速度和體循環中相近,因此血流的動能部分所占的比例較大。

 

 

23

 

 

arrow
arrow
    全站熱搜

    經筋代名詞 發表在 痞客邦 留言(0) 人氣()